Preclinical Characterization of GS-5894, a Potent NNRTI with Once-Weekly Oral **Dosing Potential**

¹Gilead Sciences, Foster City, CA 94404 USA; ²Institute of Organic Chemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic

Conclusions

- GS-5894 is a novel and potent NNRTI with an improved resistance profile compared to other NNRTIs
- GS-5894 demonstrates a low CL and long MRT when dosed in dogs
- Given the low predicted metabolic CL, GS-5894 shows potential as a component of a novel once-weekly oral regimen for HIV-1 treatment

Acknowledgements: We extend our thanks to the team members who contributed to the advancement of this project. This research was a collaboration between Gilead Sciences and the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB)

Background

- Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a clinically validated class of HIV-1 antiretrovirals
- NNRTIs bind an allosteric binding pocket near the polymerase active site of HIV-1 reverse transcriptase (RT) to prevent viral replication
- In the clinic, NNRTIs are prescribed as part of a highly active antiretroviral regimen containing one or more nucleoside reverse transcriptase inhibitors (NRTIs) and/or an integrase strand transfer inhibitor (INSTI)
- Common resistance-associated mutations (RAMs) selected by NNRTIs include K103N and Y181C within the binding pocket of HIV-1 RT
- Although all currently approved oral NNRTIs require at least once-daily administration, their physiochemical properties (low solubility, high logD) make them good candidates as a component of a long-acting regimen
- Here we describe GS-5894, a novel and potent NNRTI with an improved resistance and metabolic profile supportive of once-weekly (QW) oral dosing for the treatment of HIV-1 infection

Methods

- Drug half-maximal inhibitory concentration (IC_{50}) values against recombinant HIV-1 RT enzyme were measured using a biochemical assay
- Antiviral activity resulting in 50% inhibition (EC₅₀) and 50% loss in cell viability (CC₅₀) was evaluated in: - Cultured human T-cell lines (MT-4, MT-2) acutely infected with HIV-1_{IIIB} - Primary human CD4+ T-cells activated with phytohemagglutinin (PHA) and human interleukin-2 (IL-2) and in monocyte-derived macrophages acutely infected with HIV-1_{Bal}
- HIV-1 cross-resistance was assessed against a panel of 32 HIV-1 reporter viruses containing NNRTI resistance-associated mutations at Monogram Biosciences (South San Francisco, CA)
- Mutations that emerged under selective drug pressure were selected by dose-escalation in MT-2 cells infected with HIV-1_{IIIb} and identified by population sequencing
- Level of drug resistance was expressed as a mean fold-change value calculated for each drug from the ratio of EC_{50} for the selected virus (or site-direct mutant) over the EC_{50} of the WT (or parental input) control virus
- Compound binding to rat, dog and human plasma was measured by equilibrium dialysis (EQDS). Predicted clearance (CL) was measured by metabolic stability in hepatocytes.
- In vivo pharmacokinetic (PK) studies were conducted in rat and dog following GS-5894 oral (PO) and intravenous (IV) administration. Measured PK parameters included the apparent volume of distribution at steady state (Vss), bioavailability (F%), and mean residence time (MRT).

Eric B. Lansdon,¹ Andrew Mulato,¹ Petr Jansa,¹ Gary Lee,¹ George Stepan,¹ Mike Matles,¹ Kelly Wang,¹ Carmen Ip,¹ Julie Fogarty,¹ Dan Soohoo,¹ Bernard P. Murray,¹ Stephen R. Yant,¹ Zlatko Janeba,² Richard L. Mackman,¹ Tomas Cihlar¹

Results

GS-589	4 Activity	and Selec	tivity in Hu	uman Cells
	Μ	CD4+		
	EC ₅₀ (nM)	CC ₅₀ (µM)	TI (CC ₅₀ /EC ₅₀)	EC ₅₀ (nM)
GS-5894	2.7 ± 0.3	20.2 ± 10.6	7,600	1.7 ± 0.6
RPV	0.7 ± 0.3	6.5 ± 1.5	8,900	0.9 ± 0.8

GS-5894 has an improved resistance profile against clinical isolates from NNRTI- experienced patients compared to control NNRTIs EFV and RPV

10 Drug Conc	L100I H315N			►EFV ►RPV ►GS-5894			
0	20 40 6	0 80 100 Days in Culture	120 140	160			
				Fold Change EC ₅₀ from WT			
Selection Drug	Fold EC ₅₀ Reached	HIV-1 RT Mutations	GS-5894	EFV	RPV		
CS 5001	32	I135V, P236T	1.3	0.6	1.0		
GS-3894	256	1135V, E138K , P236T	12.8	5.5	14.5		
EFV	1024	L100I, P225H/P, H315N	1.6	>37	3.1		
RPV	1024	A98G, L100V, K101E	2.7	>37	47		

Known NNRTI resistance-associated mutations in boldface

• GS-5894 selections progressed more slowly relative to control NNRTIs RPV and EFV

Presented at CROI 2024; March 3-6, 2024; Denver, Colorado

A98G L100V K101E

1135V E138K P236T

Plasma binding (% free)

Hepatocyte predicted CL

Using a hybrid compartmental/allometric model, the predicted QW human dose is <600 mg GS-5894 to achieve an $IQ \ge 5$ at steady state trough concentration

GS-5894 Plasma Binding and Predicted Metabolic Stability

	GS-5894			
	Rat	Dog	Human	
	0.07	0.04	0.06	
(L/h/kg)	1.39	0.50	0.17	

• GS-5894 is tightly bound to plasma across species

• GS-5894 is predicted to exhibit low human hepatic metabolic CL

